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Summary. Monoheptapolyhexes are polygonal systems with exactly one heptagon and otherwise 
hexagons. General formulations with emphasis on the C,H s formula, and the first enumerations of 
C,H~ isomers are reported for these systems. Also a more general class of systems is treated in some 
detail, viz. P7(6), which consists of hexagons and/or heptagons. The maximum numbers of heptagons 
for given C,H, formulas are studied, and the possible C,Hs formulas are specified. 
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Isomere yon polycyclischen konjugierten Kohlenwasserstoffen mit 6- und 7-gliedrigen Ringen 

Zusammenfassung. ,,Monoheptapolyhexe" sind polygonale Systeme mit genau einem Siebeneck und 
ansonsten nur Sechsecken. Es wird der allgemeine Formelapparat mit Betonung auf C.Hs und die 
Auswertung bezfiglich der Anzahl von C.Hs-Isomeren ffir diese Systeme berichtet. Ebenso wird 
fiber eine generellere Klasse von Systemen, nfimlich Pv{6) berichtet, die aus Sechsecken und/oder 
Siebenecken besteht. Die Maximalanzahl yon Siebenecken ffir gegebene C.H~-Formeln wird 
untersucht und m6gliche C.H~-Formeln werden angegeben. 

Introduction 

The completely condensed polycyclic conjugated hydrocarbons are of great interest 
in organic chemistry. As chemical graphs [1] they are represented by polygonal 
systems, viz. connected geometrical constructions of polygons, where any two 
polygons either share exactly one edge or are disjoint. Benzenoid hydrocarbons 
[2,3] possess exclusively six-membered rings and are represented by benzenoid 
systems [3-5]. Dias [6] has listed chemically known polycyclic conjugated hydro- 
carbons with different ring sizes. In some of his theoretical analyses he concentrated 
upon structures with one ring size in addition to six-membered rings. A special kind 
of such hydrocarbons are represented as chemical graphs by the mono-q-poIyhexes 
[7]. A mono-q-polyhex is a polygonal system consisting of exactly one q-gon 
and otherwise hexagons (if any). Benzenoids [8], fluoranthenoids [9, 10] and 
biphenylenoids [11] are mono-q-polyhexes with q = 6, 5 and 4, respectively. Some 
of the cited works [8, 9, 11] contain more or less extensive enumerations of C,H~ 
isomers of the systems in question. It appears that many of the topological properties 
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of mono-q-polyhexes are substantially different for q < 6 and q > 6, as might be 
expected. In the present work the first (extensive) enumerations of mono-q- 
polyhexes with q > 6 are reported; here the monoheptapolyhexes (q = 7) are treated. 
Furthermore, some theoretical studies on polygonal systems with hexagons and/or 
heptagons are performed. Here the number of heptagons may be more than one. 

Definitions and Notation 

A classification of polygonal systems (see above for a definition) to be employed 
here, is closely connected with the classification of polyhexes which was adopted in 
a recent review [12]. Presently we shall only consider simply connected polygonal 
systems. They can only have vertices of degree three or two, the latter kind only 
found on the perimeter. A benzenoid is a simply connected, geometrically planar 
(non-helicenic) polyhex. Correspondingly, a simply connected, geometrically planar 
mono-q-polyhex (see above) may be termed a mono-q -benzeno id .  Notice that a 
mono-q-benzenoid with q = 6 is a benzenoid. A simply connected, geometrically 
nonplanar (helicenic) mono-q-polyhex may be referred to as a mono-q-he l icene;  for 
q = 6 it is a helicene. The mono-q-henzenoids and mono-q-helicenes taken together 
constitute the class of mono-q- fusenes .  

Let r be used to designate the number of polygons (or rings) of a polygonal 
system, P. Another important invariant of P is n i, the number of internal vertices. 
An internal vertex is defined as a vertex shared by three polygons. A polygonal 
system is ca tacondensed  when it does not possess any internal vertex (hi = 0), while 
a per i condensed  polygonal system has at least one internal vertex (n z > 0). 

A polygonal system (P) corresponds to a hydrocarbon with a formula C,Hs. 
Here n, the number of carbon atoms, indicates the total number of vertices in P. 
The number of hydrogens, s, is at the same time the number of secondary carbon 
atoms and corresponds to the number of vertices of degree two in P. 

Mono-q-Polyhexes 

Let rq be used to designate the number of q-gons in a polygonal system. Then a 
mono-q-polyhex is characterized by r = r 6 + rq where rq = 1, and we shall introduce 
r 6 = h (the number of hexagons). 

For a simply connected mono-q-polyhex (mono-q-fusene) one has the following 
relations between four of the invariants which were introduced above. 

h = ½ ( n -  s), n i =  n -  2s + q (1) 

n = 4h - ni + q, s = 2h - n i + q (2) 

Notice also that r = h + 1. 

Monoheptapolyhexes 

Genera l  F o r m u l a t i o n s  

The formulations of the preceding section are applicable to monoheptapolyhexes 
(mono-7-polyhexes) with q = 7. 



Isomers of Polycyclic Conjugated Hydrocarbons 405 

The max imum number  of internal vertices, (nl)max, for mono-q-fusenes at a given 
h is of interest. One of the present authors  [-7] conjectured an expression for (hi)max, 
which later was assumed to be valid for q = 3, 4, 5 (and 6) [-11]. However,  the 
conjecture was disproved for q > 6 [13]. Instead, we propose the following relations: 

0 ~ ni ~< 2h + 3 - I-(12h + 9)1/2]. (3) 

These bounds  are simply identical to those of benzenoids with h + 1 hexagons [8]. 
In other words, it is inferred that  (ni)m, x, the upper  bound  in Eq. (3), for a 
mono-q-fusene (q > 6) with r polygons is the same as (nl)ma x for a benzenoid with r 
polygons (which are hexagons). A mono-q-fusene with n~ = (ni)ma x is certainly 
non-helicenic and therefore a mono-q-benzenoid.  It is referred to as an extremal 
mono-q-benzenoid  in analogy with the class of extremal benzenoids [8, 14-18]. 

F r o m  Eqs. (2) and (3) one finds the coefficients of the formulas of extremal 
monoheptabenzenoids ,  say n a and s" as 

n" = 2h + 4 + [(12h + 9)1/2], s a = 4 + [-(12h + 9)1/2]. (4) 

Hence n a = s a + 2h. Here h = 0, 1, 2 , . . . .  
A one-to-one correspondence may  be established between all the possible C ,H s 

monohep tabenzeno id  or monoheptafusene  formulas (which amounts  to the same) 
on one hand, and the CNH s benzenoid formulas on the other. Any Cul l s  benzenoid 
isomer can namely be converted to a C,H~ monoheptabenzenoid  isomer by 
expanding one of the hexagons at the perimeter to a heptagon.  Then n = N + 1 and 
s = S + 1 is valid. Fur thermore ,  it is inferred that  this conversion Cul l s  ~ C,Hs 
accounts for all the possible monoheptabenzenoid  formulas. In consequence, the 
C,H~ formulas for catacondensed monoheptabenzenoids  (where n = 2 s - 7 )  are 
nonbenzenoid  formulas, while the Cul l s  formulas of extremal benzenoids I-8] are 
not compatible with the monoheptabenzenoids.  Otherwise the formulas ofbenzenoids 
and monoheptabenzenoids  overlap. 

For  a given n, which C,H~ formulas are possible for the monoheptabenzenoids?  
The corresponding ques t ionfor  benzenoids has been answered [8]. Then, by virtue 
of the above discussion it was found: 

2 [ ½ ( n -  1 ) + ½ ( 6 n - 6 )  1/2] - n + 2 < ~ s < . n + Z - Z [ ¼ ( n - 3 ) ] .  (5) 

Here the possible values of n are n = 7, 11, 14, 15, 17, 18, 19,.. .  (not 8, 12, 13, 16). 
In consequence, s = 7, 9, 10, 11,.. .  (not 8). For  a given n (in the allowed domain),  
all the s values between the upper  and lower bounds  on Eq. (5) inclusive are realized, 
provided that  the parities of n and s are taken into account: either both  n and s are 
even, or both  of them are odd. 

Isomer Enumeration 

A computer  p rogram was designed in order to generate the monohep tabenzeno id  
C,Hs isomers successively with increasing h values. A complete  listing of the numbers  
of isomers for h ~ 7 is given in Table 1, while Table 2 shows incomplete data  for 
higher h values, but  so that  the extremal systems for every h are included. A special 
a lgori thm was used to recognize the symmetry of the generated systems; in general 
the possible symmetry groups are Dvh, CTh, C2v and C s. In Tables 1 and 2 there are 
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Table 1. Numbers of C.H~ isomers of simply connected, 
geometrically planar monoheptapolyhexes (monohepta- 
benzenoids): complete data for h ~< 7 

h nl Formula Dvh C2v Cs Total 

0 0 C7H 7 1 0 0 1 

1 0 CltH 9 0 1 0 1 

2 0 C15Hll 0 3 1 4 
1 C14Hlo 0 1 0 1 

3 0 C19H13 0 3 10 13 
1 ' C18H12 0 1 4 5 
2 C17Hll 0 2 0 2 

4 0 C23H15 0 9 47 56 
1 C22H14 0 4 28 32 
2 C21H13 0 4 8 12 
3 C2oH12 0 1 2 3 

5 0 C27H17 0 10 221 231 
1 C26H16 0 4 174 178 
2 C25H15 0 8 74 82 
3 C24H14 0 3 23 26 
4 C23H13 0 4 5 9 

6 0 C31H19 0 29 970 999 
1 C3oH18 0 14 942 956 
2 C29H17 0 21 522 543 
3 C28H16 0 8 196 204 
4 C27H15 0 7 67 74 
5 C26H14 0 2 17 19 
6 C25H13 0 1 0 1 

7 0 C35H21 0 35 4241 4276 
1 C34H2o 0 14 4891 4905 
2 C33H19 0 35 3255 3290 
3 C32H18 0 18 1461 1479 
4 C31H17 0 20 580 600 
5 C3oH16 0 3 190 193 
6 C29H15 0 9 44 53 
7 C18H14 1 1 3 5 

no entries for Cvh because the smallest m o n o h e p t a b e n z e n o i d s  with this symmet ry  

have h = 21. 
The invar iants  of  Tables  1 and  2, which include the C , H  s formulas,  were 

genera ted  au tomat ica l ly  as an "empir ical"  material.  I t  is grat ifying to observe that  

this mater ia l  is comple te ly  consis tent  with Eqs. (3)-(5) and with the discussions 

a t tached  to these equat ions.  This is a s t rong indicat ion that  the above  theory  is 

correct.  
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Table 2. Numbers of C,H s isomers of simply connected, 
geometrically planar monoheptapolyhexes (monohepta- 
benzenoids): incomplete data for h > 7 

h n i Formula C2v C s Total 

8 5 C34H18 15 1677 1692 
6 C33H17 16 528 544 
7 C32H16 7 128 135 
8 C31HI5 5 16 21 

9 7 C36H18 15 1457 1472 
8 C35H17 18 388 406 
9 C34H16 6 66 72 

|0 C33H15 2 1 3 

10 9 C38HIs 20 1186 1206 
10 C37H17 18 222 240 
11 C36H16 1 18 19 

11 1l C4oH18 16 735 751 
12 C39H17 9 99 108 
13 C38H16 1 1 2 

12 13 C42Hls 8 420 428 
14 C41H17 6 20 26 

13 15 C44H18 8 160 168 
16 C43H17 1 2 3 

14 17 C46H18 3 38 41 

15 19 C48Hls 1 5 6 

Polygonal Systems with Hexagons and/or Other Polygons of a Given Size 

The  sys tems  cons ide red  here  are s imply  connec t ed  p o l y g o n a l  systems,  Pq/6), which  
consis t  of  hexagons  a n d / o r  q-gons.  T h e y  are cha rac te r i zed  by  

r = r 6 + rq (6) 

where  r 6 ~> 0, rq > 0. The  m ono-q - fu senes  are special  cases for rq = 1. 

F o r  a s imply  connec t ed  p o l y g o n a l  sys tem it is easily found  [-19, 20] 

Z q = n + 2r + ni - 2 (7) 

where  E q is the p o l y g o n - e d g e  sum,  in the presen t  case for  Pq(6): 

Y~q = 6r 6 + qrq.  (8) 

O n  c o m b i n i n g  Eqs. (6)-(8) it is ob t a ined  

6r + (q - 6)rq = n + 2 r  + ni - 2. (9) 

I s o m e r s  of  a given C , H  s f o r m u l a  are considered;  hence  the n and  r values  are fixed, 
a n d  in par t icu lar :  

r -- X(n - s) + 1. (10) 
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The symbol ni in Eq. (9) indicates the number  of internal vertices in Pq(6)" Consider 
now a benzenoid (r = r6) with the given formula (C,H~), if it exists. Then clearly 

6r = n + 2r + n* - 2 (11) 

where n* is the number of internal vertices in the benzenoid under consideration. 
On subtracting (11) from (9) it is obtained 

(q - 6)rq : n i -  n* .  (12) 

Even if C,H~ is a formula for which no benzenoid can be constructed (a 
nonbenzenoid formula), Eq. (12) can be applied. One should only interpret n* as 

n* = n - 2s + 6. (13) 

Polygonal Systems with Hexagons and/or Heptagons 

Let a simply connected polygonal system be identified by the symbol P7(6) when it 
consists of hexagons and/or heptagons. This is the special case for q = 7 of the class 
which was considered in the preceding section. In consequence, a P7~6) system is 
characterized by r = r 6 + r 7, where r 6 >~ 0, r 7 > 0. The monoheptafusenes are special 
cases for r 7 = 1. 

M a x i m u m  N u m b e r  o f  H e p t a g o n s  

Consider the P7(6) systems with a given formula C,Hs. What  is the maximum 
number of heptagons, (r7)max, compatible with that formula? This is an interesting 
question, which was first posed by Dias [21]. However,  he did not give a satisfactory 
answer [6, 21, 22]; in the following we shall demonstrate counterexamples to some 
of his conclusions. 

On inserting q = 7 one obtains from Eqs. (12) and (13): 

r 7 = n i - n*  = n i - n + 2s - 6. (14) 

It is clear from this relation that the maximum of r 7 is achieved on maximizing n i. 
The formula C,Hs is associated with a definite total number of polygons, r; cf. 
Eq. (10). N o w  (ni)ma x for a given r clearly cannot exceed the maximum number of 
internal vertices for a benzenoid with r hexagons. On inserting from (10) into the 
known expression for this maximum value [8], one obtains 

ni ~< n -- s + 3 - [(6n - 6s + 9) 1/2] (15) 

and consequently: 

r 7 ~< s - 3 - [-(6n - 6s + 9)t/2]. (16) 

This relation holds also if C ,H  s is a nonbenzenoid formula. If the sign of equality 
in (16) can be realized for a P7(6) isomer with the formula C,Hs, then r v = (rv)ma x for 
this formula. In the serach for such an isomer one knows the total number  of 
polygons (r) from Eq. (11), while the number of internal vertices is 

n i = r 7 + n* = r v + n - 2s + 6 (17) 
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in accordance with Eq. (14). It may happen  that  

s - 3 - [(6n - 6s + 9) 1/2] > ½(n -- s) + 1. 

In that  case 

(18) 

r 7 ~< ½(n - s) + 1 (19) 

is a sharper upper  bound  than (16). If the sign of equality in (19) is realized, then 
r v = r, which means that  the P7(6) system consists exclusively of heptagons.  

As the first examples, consider the monoheptabenzenoids  of Fig. 1. In all these 
cases, Eq. (16) gives r 7 ~< 1. Therefore these systems possess the max imum numbers  
of heptagons  for the formula in question; r v = (rv)ma x = 1. More  advanced examples 
are illustrated in Fig. 2: the max imum numbers  of heptagons for Pv(6) systems with 
the three formulas therein are again consistent with Eq. (16), where the sign of 
equality is realized in all three cases. Analyses of Dias imply ( r 7 ) m a  x = 1 for C26H14 
[ 2 2 ] ,  ( r 7 ) m a  x = 1 for C 3 a H 1 6  [22] and ( r 7 ) m a  x = 3 for C34Hls [6]. Hence the three 
systems of Fig. 2 are counterexamples to the Dias' statements. 

Consider  now P7(6) systems where, in contrast  to those of Figs. 1 and 2, the 
heptagons  are predominant .  In the cases C22H16 and C21H15 (see Fig. 3) Eq. (16) 
gives r 7 ~< 6 and r v ~< 5, respectively. In both  cases the condi t ion (18) is satisfied so 

C7H 7 Cl lH9  C14H10 ~- ~ / 
C17H]1 

~ ~ Fig. 1. All extremal monohepta- 
benzenoids for h ~<4; they all 
have r v = (r7)ma x = 1; here and 
in the following figures, inscribed 

j numerals indicate polygon 
- -  v-  roll 

C20H12 dimensions 

C26H14 C34E[16 

~ C34H18 Fig. 2. Three P7(6) systems with r 7 = (r7)ma x for 
the given formulas 
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C22H16 C21H15 

C20H14 C19H13 Fig. 3. Four P7(6) systems with r=4  and 
r7 = (rT)max 

C30H18 C28H16 

~C50H28 Fig. 4. Three P7(6) systems with r v = (rT)rnax 

that (19) comes into operation; it yields r 7 ~ 4 in both cases. The examples in Fig. 3 
show that, indeed, r = r 7 = 4 (only heptagons) is realized in these two cases. This 
last feature is also realized for C 2 o H 1 4  (Fig. 3), for which both (16) and (19) give 
r7 ~< 4. On the other hand, Eq. (16) gives r 7 ~ 3 for C 1 9 H 1 3  , the last example in Fig. 3, 
so that no system with only heptagons is possible for this formula. The three systems 
in Fig. 4 are counterexamples to Dias [6], from whose analysis the values (rv)max = 5, 
3 and 10 are prescribed for C3oH 1 s, C2 sH 16 and C5 oH 28, respectively. The systems 
in Fig. 4 are again consistent with our relations (16) and (19). 

For  the sake of completeness we should also demonstrate cases where the sign 
of equality in (16) cannot be realized. Consider the first the "normal" case of r = 10 
for C 4 0 H 2 2  (see Fig. 5). Here Eq. (16) gives r 7 ~< 8, and r 7 = ( t '7 )ma x = 8 ( n  i = 10), is 
realized. On the other hand, for C 4 1 H 2 3  , which also is compatible with r = 10, 
Eq. (16) gives r 7 ~ 9. If the sign of equality could be realized here, one should have 
r 7 = 9, ni = 10. It seems impossible to construct such a system; we believe that 
(rT)ma x = 8 is valid in this case. Two examples of C41H23 systems with r 7 = 8 (ni = 9) 
are displayed in Fig. 5. Similarly, for C 4 2 H 2 4  (r  = 10) one has r 7 ~< 10 from (16), but 
r v = 10, ni = 10 can clearly not be realized for a system with only heptagons (see 
below). Here one has (r7)ma x = 9; tWO systems with r 7 = 9 (n i = 9) are included in 
Fig. 5. If we proceed t o  C 4 3 H 2 5  (r  = 10) we find in the "normal" way that systems 
with r 7 = (rq)ma x = 10 (only heptagons) and ni = 9 easily can be constructed. 
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~ 0 I : 1 2 2  

C411123 

J C42H24 Fig. 5. Some P7(6) systems with r = 10 and (presumably) 
r7 = (rT)max 

Possible Chemical Formulas 

Which C,H s formulas are possible for P7(6)? This question was posed by Dias and 
supposed to be answered by his Table PAH v [6]. We found some errors in this table 
and therefore give an improved version in Fig. 6. Only even-carbon C,Hs formulas 
are considered herein (as in Dias' Table PAHT) since these are the formulas of 
particular interest for chemists. The above question may be answered in general (for 
both even- and odd-carbon C,H~ formulas) by relations similar to Eq. (5) for mono- 
heptapolyhexes. 

As a matter  of fact, the lower bounds ors  for given n values in the P7(6) systems 
are realized in monoheptapolyhexes,  so that 

s ~> 2[½(n - 1) + ½(6n - 6) 1/2] -- n + 2 (20) 

is valid. But for P7(6) systems in general also n = 12 is possible. In this case Eq. (20) 
reproduces the formula C i z H l o  (r = r 7 = 2; two  heptagons). For  n = 38, 48 and 60, 
Eq. (20) prescribes C 3 8 H i 6 ,  C 4 8 H i 8  and C6oH2o for the respective formulas with 
minimum s values see Fig. 7. These formulas should not exist for PTt6) according to 
Dias (Table PAH 7 [-6]). 

The upper bound of s as a function of n is different from the one of Eq. (5) for 
P7(6) systems in general. In Fig. 6 the heavy line indicates the upper bound ofs  for 
monoheptapolyhexes.  In order to find this upper bound for P7(6), it is first observed 
that 

n = 1 3 + 5 i + j ,  sin, x = 9 + 3 i + j  (21) 

for i = 0 ,  1, 2 . . . .  , a n d j  = 0, 1, 2, 3, 4. This scheme incorporates C13H9, which is a 
benzenoid formula, but applies to r = r 6 + r v only for r 7 = 0. However, the formulas 
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7; s 

12 110 

14 lO [ 

16 112 L 

18 12 l 20 12 14 

22 14 1.6 

24 14 1.6 

26 14 11."~ 18 

28 1.4 i i  !16 18 
30 16 I8 20 

32 16 20 22 

34 1.6 18 20 l 22 

36 1.6 1.8 20 [ 22 

38 16 18 20 22 

40 18 20 22 [ 24 
I 

42 18 20 22 24 

44 18 20 22 24 

46 18 20 22 24 

48 18 20 22 24 

50 20 22 24 26 

52 20 22 24 26 

54 20 22 24 26 

56 20 22 24 26 

58 20 22 24 26 

60 20 22 24 26 

62 22 24 26 28 

64 22 24 26 28 

66 22 24 26 28 

68 22 24 26 28 

24 

] 24 
26 

26 28 

26 28 

26 28 30 

2fi 28 30 

28 30 32 

28 30 32 
2s a0 ] a2 
28 30 ~ 32 

28 30 32 

I 28 30 32 

30 32 34 

30 32 34 

30 32 34 

30 32 34 

34 

34 

34 36 

34 36 

34 36 38 

36 38 40 

36 38 40 

36 ] 38 40 

36 ~ 38 40 

42 

42 Fig. 6. Possible even-carbon formulas for 
P7¢6) systems when n ~< 68 

CvHT, C l l H  9 and C12H10 for P7(6) systems are not covered. In (21), 

i =  [(n - 1 3 ) / 5 3  = L ( n  - 3 ) / 5 3  - 2 .  ( 2 2 )  

This expression was inserted into n of Eq. (21), whereupon it was obtained 

j = n - 3 - 5L(n - 3)/53. (23) 

As the final step, the expressions from (22) and (23) were inserted in Smax of Eq. (21) 
and yielded: 

s ~< n - 2[(n - 3)/5]. (24) 

This upper bound is realized as Sma x for every possible n, also for n = 7, 11 and 12. 
Furthermore, we find all the upper bounds of s in Table PAH v of Dias [-6] to be 
reproduced by Eq. (24). 

Conclusion 

Dias [6] has documented the chemical importance of polycyclic conjugated 
hydrocarbons with one ring size in addition to six-membered rings. In the present 
work such systems with six-membered and/or seven-membered rings are treated, as 
represented by the polygonal systems P7(61" During this work several inaccuracies 
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C38H16 C48H18 
c60n20 

Fig. 7. Monoheptapolyhexes (special P7(6) systems) where s = Sm~ n for the pertinent n values in C,H~ 

and errors in the book  of Dias [6] were detected. Since this ,is a frequently cited and 
widely used handbook  it is important  that errors therein are corrected. In particular, 
we have pointed out  Dias' [-6] unsatisfactory treatment of (rT)ma x for P'z(6) systems. 
But there are also inaccuracies and wrong conclusions in Dias' treatment of (rq)ma x 
for Pq(6) systems when q = 3, 4, 5, 8, 9 or 10. Furthermore,  we have pointed out some 
few errors in Dias' [-6] Table PAH7 for the possible C,Hs formulas of P7~6) systems. 
Some errors were also detected in Dias' Tables PAH s and PAH9, and more 
significant errors in each of Tables PAH 3 , PAH 4 and P A H  5 . A detailed specification 
of errors in the H a n d b o o k  of Dias [-6], supported by counterexamples, is available 
on request to the authors. 
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